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- Abstract. A variant of the classical pseudo-arclength \::
) :':‘-‘l‘.'v‘
w@' continuation method is proposed. Basically, the method can .""S_}.Q:
£ .
g ‘ ‘
& be viewed as pseudo-arclength continuation in (r,l)(;space
LY ¢
N where r is a functional of the solution. Another difference
3 is a three-parameter predictor instead of the standard Euler
b &
step. This predictor, as well as the Newton corrector
X iteration, are justified and some numerical results for
1
; 4
4 reaction-diffusion equations are presented. The method
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:’ 1. Introduction
B & Boundary value problems for partial differential equations
that describe phenomena in many fields of application are
1‘: usually nonlinear and depend on one or several parameters of
;“' the underlying system, These parameters enter in various ways.
’, The coefficients or right-hand sides of the differential

equations may depencd on them, the boundary conditions or, for
ve example, the domain. With respect to these parameters, in gen- T
- eral, bifurcation and non-unicity effects occur. For a list of E*-E;
E different problems from the applications as well as a first ;';E
::, introduction to analytic and numerical aspects we refer to [8] ;‘:f‘:
. A survey of the state of the art may be obtained from [7] ;r:;:-:r
' Frequently, the only way to explore the solution manifolds ‘\'ﬁ'if.'\
i# of these problems is to continue along the solution branches, 'g:—s;‘;
: in the case of multi-parameter dependence, with respect to one E-:::::
of the parameters for fixed values of the others. This Eé-zé:
:‘ approach yields a quantitatively satisfactory approximation if, :‘::"::
:: for example, suitable discretizations are used, while it may be g.;:_i
: difficult to get a full qualitative impression in this way. -.:-‘:.:E"“
Other analytic techniques ylelding the latter but not also a :;:::!‘.4
: quantitatively useful result, may well supplement the numerical Z-';Q.-“:':-:
2 methods. ‘.:;":...\:‘:
‘_. For the continuation along solution branches, different ;':'_::_
x methods have been proposed and applied. We restrict considera- %f;‘."-‘?
". tions here to the methods introducing an arclength-like -.:\“::}
_: additional parameter. One of the earlier and frequently ;‘:,-.}:;
'.(\ referenced papers is [6] To be more specific, let the “:'-!]
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parameter-dependent nonlinear problem be given by
(1.1) G(u,a) = 0

where u is an element of a Banach space X and G maps xxRP into
X. We denote by X the component of a that is presently not .
fixed and, for simplicity, suppress the others. The pseudo-
arclength method of [6] then introduces an additional parameter

o and augments (1.1) by a normalizing condition

G(u,r) = 0,
(1.2)
N(u(o),r(o),0) = 0 .

Thus, u as well as A are locally parametrized by o. In the
following section, we will introduce a slight modification of
this approach. In applications, one is frequently interested
in a functional of u, for example, a norm, the value of the
definite integral of u over some region, etc. This quantity
may represent a physically important parameter just as the
components of a. For graphical representations also, usually
such a functional is depicted versus one or two of the a's,
Using a functional of u, therefore, is not equivalent to
introducing another artificial parameter,.

After introducing the basic continuation method, we
discuss a new predictor to be used in conjunction with it in
Section 3. An analysis of the corrector iteration is given in
the following section. and in the last section, some numerical

results are presented,
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2. The Continuation Method

For the problem
(2.1) G(u,X) = 0, G:XxR » X

let s denote the arclength along a solution arc (u(s),r(s)).
Under sufficient smoothness and regularity assumptions this

latter dependence is differentiable and thus (Gg = Gu(uo,lo))
(2.2a) cg ug + G

(2.2b) tagt? + X

in a solution (ug,Arg) = (ulsg),A(sg)) of (2.1). Here, sub-
scripts stand for partial derivatives and a dot for differen-

tiation with respect to s.

In [6] it was proposed to augment (2.1) by the following

normalizing condition:

(2.3) N (u,A,0) = 8 dglu-ug) + (2-8)%g(r-2g) - 60 = 0
which approximates (2.2b). o is thus called the pseudo-

arclength parameter. 6o iIs the steplength in o. © satisfying

0 < 8 < 2 was meant to be a weighting parameter,

Let r(u) denote a functional of u. For simplicity, let

(2.4) r(u) = ftud
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.

“ TN 0

T
V)

s

~

10

&

'g.:;s' Yy e
%58

X

,v."l Qe
AN
";’ﬂ!‘ .

)
hJ

s
oy
S
EEL v,

=
hY
v %

W

N
2%
.

A

-
N\

.
i

,
AN

L)
a,
)

.
[}




B 2

¢

W.8.%e &4 2 ENERY F ¥ §F §F ¥ 3 wWEEwwTe = %

...........

B A S dER 0P P IIAHSVEREHTI W TS s s AW S

where I+! is the norm of u which we assume to be differenti-
able. Other functionals may be chosen, as for example, in VLSI
problems ([2]), but in the following we restrict considerations
to (2.4). Quite frequently, this parameter is used in a graph-
ical representation of the solution manifold and also has a
physical significance.

The following augmenting equation leads to a pseudo-

arclength method in (r,X)-space.
(2.5) N.(u,2,0) = 8rg(r-rg) + (2-8)Ag(A-Xg) - 60 = 0,

where 0 < 8 < 2, ry

Tugh, ro = (Eg hut) 5"
While the classical pseudo-arclength method with Euler
predictor using (2.3) is in general optimal in a local sense
among continuation procedures utilizing only first derivatives
and depending only on one parameter, in this case the step-
length along the tangent, (2.5) will be combined with a more
exprnsive predictor to yield in many examples a better global
continuation behaviour. This will be demonstrated in 5.

Let us assume from now on that X is a Hilbert space,

sufficient regularity is given, and -1 = (',')1/2, then

(2.6) l.‘o = (Uo,l]o)/ro

From (2.5) we see that the three values 0,1,2 for 6 are special

in the sense that for ¢ = 0 (2) the augmenting equation

characterizes points with a fixed A(r)-value, while for 9 = 1
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the points lie on a hyperplane orthogonal to the solution arc Qﬁg&ﬂ
in (rg, Ag). ol
" ¢
This suggests to continue to target values in the two ‘W'
» oac
physical parameters r and A. Such a strategy seems appropriate ;:{qh
AN
( ", '-.
as long as starting from a point on the solution curve another d%j%\
Y
VoL
point corresponding to a suitably picked target value can be RAGATR
> | Y-
computed in a few number of (corrector) iterations. This will, {:&&;
e
of course, depend on the starting guess and thus on the method ?;g}
g
used for predicting this point. Only the combination of (2.5) £¢Qﬁb‘
.
with the predictor presented in the next section makes this %}
.'\-
o+
continuation the effective and powerful algorithm it has proven 2
-'\_
to be at least for a series of problems from the applications. 'EL
- I
3. The Predictor ph
4_\
\""
In continuing from a point (up,Ag) on a solution branch -
%,
o
IS most continuation methods first generate a starting guess -j
VAN
-
{u ,A ) and then iteratively determine a new solution point, 5ﬁyta
p p \"\':\J.
F
The pseudo-arclength method in its standard version uses a :?;ﬂg
) \;q.::t,
o first order Euler predictor kel
ARG
. -": “:-\:.
Yp uo + Souo RN
_ ASASEY
(3.1) = . -~ \.}\"
3 O <
A Ag + Sokg =eaNata
: [ * o
. L . NN
Subsequently, the augmented system (2.1), (2.3) is iteratively &piﬂf
wosis
solved ('corrector'). The computed solution for & = 1 is thus :}{ﬁjs
AW
A NE
~ located in the intersection of the solution manifold and a 2,
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previous point and a distance 8¢ from this point. It is not
immediately apparent how the parameter 8§ would have to be qg::’
chosen to improve the quality of the predicted point. 33?;

It is clear that with respect to the information used,

g
L
,

eyl
N )
Paled
“1'-’5.
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namely Go and io, the Euler predictor step is locally, i.e.,

?
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4
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for 60 » U, optimal, but that, for example, in highly curved

w
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parts of the solution arc, only a rather small §o will lead to

|
|

convergence of the corrector iteration.
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In order to improve the quality of the predictor either a
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higher order method msking use of higher derivatives of G may

T
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be used or in some other way, it has to be assured that the
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predicted point better approximates a solution of the nonlinear WA
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eigenvalue problem. The first approach is suitable in particu-
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Instead of a single parameter, three are used in

‘V

u (1+y)up + 6&0
(3.2) =

. ! A}
A Ag + akg N

In case a # 8, vy = 0 the predicted point is in a non-tangential

1§

'S
.

Y
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direction from (ug,Xg). This is slightly more general than (3.1)

Ay
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s
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but, of course, treats A as a special variable as opposed to
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More explanation is needed for the coefficient of ug in Tl
,__:.‘;.:_
(3.2). Before this will be done, we complete the definition of :-:-:-;:-:
':-"z":-
the predictor. A system of three equations is used to :_"_-:t;-'
- v
determine the parameters a, 8 and Y, N,
PN
A5t
Al
N(u ,Ax ,0) = 0 , RS
p’'p .-3‘;\ -2
Yl
@ —d
. A = e
(3.3) (uo,C(up, p)) o, ..:.':_.;:
e 4
et
y - e
R (ug, G(up,)\p)) =0 . j-';‘».‘-‘r
'n
In addition to the normalizing equation, two orthogonality PRNSS
relations with respect to the scalar product on X are imposed. :'.'.:'_.‘_:"::
‘\:-"‘;'
‘0 The basis for these equations is twofold. First, it assures
| \ o
O Bl
that the predicted point is a weak solution of (2.1) with -::-:}:
, . O N
respect to the subspace spanned by ug and ug. On the other -::-::'-.:
: RO
- hand, (3.2) shows that R
‘ (3.4) (u G(u ,x)) =0
: p’ P’ P
t holds, which defines a generalized Rayleigh-quotient. -
' e
E The system (3.3) in general need not have a solution "
, (a,B,Y) or such a solution is not necessarily unique. 1If, for ﬁ-
» M
,h example, ug and ug are parallel, then the rank of the Jacobian gj
. AN
» A
' of (3.3) is at most two. Therefore, a least squares solution \:
» S
] e
! of (3.3) is to be computed. In order to be able to analyze NN
‘ PN
o several important features of the continuation method, we have .
E R
g RN
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to more closely consider the case of bifurcation points. Let YOIHE
SY LA
Al
us introduce the notation :%‘n%\
ASRYLHE,
A W
ok
> G(u, )
(3.5) Fly) = y ¥y = {u,)) .
N(u,X, o) :__
S
and use subscripts for partial derivatives. (ug,Xry) is a OEAC
e simple pitchfork (symmetric) bifurcation point of (2.1) if the P_;T-"-_‘
following conditions hold “
W
0
= ] = 1 .
-~ N(Gu) span {¢0}9 $o ’ ;
I'{
.\..'-
0 0 :‘s::s.,.
R(G*’) is closed and codim R(G ) = 1 , S
u u o
r":-\:'\.
(3.6) Dt d
=] *GO o .*GO b0 = 0 t‘-r'v'_
$0G, = » $0G P00 = ) 'ﬁf"'.
RN
o)
(N,
* 0 0 .
b = ¢9(G 00 + G  voso) # O Aﬁ"
v b
‘j-..:',-."’,
where vg Is the unique solution of -,::
AR,
Yy
0 0 * “'._‘.'\.;
Q* (3.7) GUVO + CA = 0, ¢gvg = 0 . i
|
N, R denote nullspace and range, respectively, and
b o* P * *
| N(Cu ) = span 1¢0} sy 0% = 1 .
From differentiating (2.1) twice with respect to s it follows
A that (cf.[4]) the algebraic bifurcation equation

v
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‘Q
~I
. &
o (3.8) (CXO + Zbgl)AO =0
1
’
‘: holds where ¢ = ¢*(G0 vove + 2G%. vy + G° ) and €2 + 23% = 1
'5 e - 0 uu ovo ul 0 AX 1 0 - *
. The two solution branches passing through (ug,Xg) are thus
N given by
-
J..
By u(s) = up + (s—so)(igvo + E16g) + O((s-so)z) , o
(3.9 ) :-":--."-.
. ."‘..:'-.:
N AM(s) = Ag + (s-sp) Ay + 0((s-sg)?) . e
- e
* PR N
S These pitchfork bifurcation points are not generic in the sense MO
o
e
‘ < e
o~ that they are in general not present under perturbations of }Q§~
(Y ) _v.'
Y LA AN
" the problem as, for example, introduced by a discretization. \}gh‘
IR
‘ ] LR 3
i!é An even further specialized class of bifurcation points, the W
P -
e symmetry-breaking bifurcation points, however, have this s
Y
i: property. ..
' -
Y Let us assume for simplicity that S is a linear operator ﬁ
< .
: on X, S2 = I, S # I such that RS,
:‘ .‘:\‘;\'
. e
- (3.10) G(Su,*) = SG(u,r), for all w e X, A ¢ R . Ry
- NS,
” Then X may be split as
;: 3.1 X X X
- (3.11) X = S() X, o
where \S = {u € X, u = Su} contains the symmetric elements with
"o respect to S and Xa = {u € X, u = —Su} y the anti-symmetric
:; elements. The pitchfork bifurcation point (upg,Ag) is then
l" . %3
symmetry-breaking if "
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A &
\ (3.12) ug EXS y Vg € Xs s %0 € Xa .
¥
4 .
¥ On the branch corresponding to the solution Ay = 0 of (3.8) it
'Y
thus holds that
\l ':,
. (-‘
! (3.13) up = * #5 ¢ X <.
- 2 i
] © b
. < "': ':
while on the other branch ¢ = 0 implies ug ¢ X_ . On the ANt
symmetry-breaking branch we have from (2.6) if S = S*
. “’ . .
5 (3.14) Ag =0, rg =20
| and thus, in this case, Nr in (2.5) is not well defined. The . }
) restriction to the two-dimensional (r,))-subspace introduces {,iT
.h."-‘-:,-:.
s additional singularities that are not present in the classical E’Q#?
4 o
- & "?-.s:-
- pseudo-arclength method. A natural modification is to intro- $§S§;
- » \q N
= duce as a parameter the norm of the anti-symmetric part ug of u E e
: corresponding to the splitting (3.11), This was done explicit- =
Y
4 L}
- ly in [10]. Since on the branch of nonsymmetric solutions
P e u, = Go € Xa, asymptotically in the bifurcation point from
) (3.9), we propose instead in the general case to use N = No in
N (3.3) whenever 'EOI/HGOH is small. e
: ‘-'.S‘-
: Let us assume now that starting at (ug,Xp) a point (u,}) éﬁi
A on the symmetry-breaking branch with r = lul < rg = Hup! Z}H{f
A RS
3 is to be computed. For vy = 0 (3.2), (3.12), (3.13) imply that y@lﬁﬁ
. ~ ':. q‘-' -
e, always Hup" >rg . This is one of the reasons that y was Q{;d}
..'-'-\.:u
\ N
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introduced in (3.,2). Another reason ls that in the linear
eigenvalue problem, computations along the eigenfunction
branches require a renormalization only and are not prone to
cancellation if in the predictor step up is actually obtained
by renormalization, i.e., B = 0 in (3.2).

Let us summarize the normalizing condition that is

proposed in the various cases.

lEoi < e Mugh: N=N,®6=#0

1
=z
@

+*

[}
oW
0]
(=}

(3.15) |§0|> (1-€)bagh: N

€ Nugl < rg < (1-e)ldgh: N = N, 0 <8 <2 .

r

In the following section, we will address the question of
the regularity of the corrector Jacobian in the various cases

of (3.15).

4, The Corrector

The point (up,Ap) computed by the predictor described in
the previous section is used as usual as starting guess for an
iterative solution of the augmented system (3.5). This is done

by Newton's method and thus the Jacobian
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has to be evaluated and inverted. The following lemma {s a

simplified version of Lemma 2.8 in [6].

£ Lemma 4.1 Let X be a Banach space and consider the linear

onerator ‘E‘: XxR + XxR of the form

where A: X » X, B: R » X, C*: X » R, D: R » R . NI

o (i) If A is nonsingular then A is nonsingular iff

AND Ty
.l
fy

’
4
*

¥ A
a
.

A
s 4L

(4.2) E =D - C*A-!B is nonzero.
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(ii) If A is singular and dim M(A) = codim R(A) = 1 then

\.'.! hl

4

" 1
SA Al

A is nonsingular iff

N
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(4.3) B ¢ R(A), C* ¢ R(A*) .
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Proposition 4.2 For an appropriate choice of the continuation ﬁgzﬁ

parameter, i.e. X respectively r, Fy in (4.1) is regular

except at bifurcation points. Datals

s

Proof The quantity E in (4.2) is easily computed as NG
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E = (2-0)Ag + Org/ig if N = N. . If we accept as an appropri-
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) that Fy is regular in regular points for N = Nr' In bifurca- ML
g tion points G, e R(Gu) so that Fy is always singular from (4.3) 4'-;.,:
; 9
‘ for N = Nr and N = No’ It remains to consider turning points. ":
o . .
If X = 0 and G, ¢ R(Gu) then the last condition in (4.3) !:j.:- :,,.‘
. . . 2 .:':.:-:.'."
| is equivalent to (®rgug/rg,ug) = brg # 0 . So if & # 0, rg # O f_s"::.:-'_:;
. et
: then F is regular for N = N_ unless rg = 0., This situation ,‘-'_'.'-:.’_’.
‘e Y r ST ND
occurs in symmetry-breaking pitchfork bifurcation points. ..,..'.-*‘
A S
A O
These points appear to be the most common type of secondary :--.‘:'-_','-}.
! ".J,'b.‘-'.
-A_‘\‘ﬂ-.
bifurcation in physical examples. Finite dimensional problems .:-}}j.:,‘,
| Sy
s exhibiting secondary bifurcation often arise from symmetry }

e
X

vy

preserving discretizations of such continuous problems. It is,
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therefore, important that the continuation method can handle

¢
¥,
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these points. In addition to that, the proposed algorithm

allows to detect these points by checking (3.14)., We refer to o :"'-

Example 1 in [11] where two symmetry-breaking bifurcation AN

w points are computed and to the second example in 5. According | N
to (3.15) N = N, is chosen in these points since Nr is not -'.:,,.\,;.‘

well defined., If the point is not a bifurcation point both ‘:_,ﬁ:‘\-,

v conditions of (4.3) are satisfied and Fy is again regular. ’F‘“‘
The above proposition does not specify in any more detail '\vr'-.

what happens in bifurcation points. If we consider F;l in the :'&\;

neighbourhood of a simple bifurcation point v = y(sy) and (v |

measure the growth of nF;lu as a function of (s-so)'1 as In Lu] bl

-
+ Ny
then we obtain the following result along the lines of proofs .E'\."\"

LKA
. in [4,5]. {\:Q
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Proposition 4.3 If the normalization condition N is chosen

according to (3.15) then on any of the branches passing through

a simple bifurcation point yp = (u(sg), A(sg)) of (2.1) for

§ > 0 sufficiently small .
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(4.4) nF;i(y(s))u = O(Is-so"l), 0 < i5'50| <o 5:

T e avs
' N

The growth behaviour of (4.4) allows the apglication of the QhUAJ
Hewton-Kantorovich theorem to show convergence for the starting e,

- point obtained by the Euler predictor ([4]). For the combina- {r §
tion with the predictor (3.2), (3.3) a different analysis would ﬁﬁﬂg&
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T
, have to be done. One of the facts that complicate such an o ﬁ
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analysis considerably is the least squares solution of (3.3). Vo 8
We do not present such a theory here and refer to an illustra- %3 Y
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tion of the practical merits of the method by the numerical

TEEL
ey
5

aios o

& results in [11] and in the following section.

T
K
e
LN

¢

by
ot
& d

5. Numerical Results
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classical pseudo-arclength method, 8 = 1 in (2.3). The gener-
alized inverse iteration ([9]) that strongly influenced the
method presented here was compared to different continuation
methods 1in [9] and to a predecessor of the present method using
a two-parameter predictor and (2.5) in [10]. The latter paper
also contains comparisons with a variant of the generalicsed
inverse iteration in the neighbourhood of symmetry-breaking
bifurcation points.

An extensive comparison of the present method with the
pseudo-arclength method is beyond the scope of this paper. We
restrict the consideration to one example exhibiting turning
points and thereby illustrate the advantages of a multi-
parameter predictor. The second example has a more complicated
solution structure and serves to demonstrate the computation of
singular points, the switching of branches at bifurcation
points, the detection of symmetry-breaking bifurcation points
and the switching of continuation parameters in a multi-
parameter problem.

The first example is the two-parameter Bratu problem
(5.1) Au + dexp(u/(1+eu)) in Q

on the unit square 2 with homogeneous Dirichlet boundary condi-
tions., This problem was solved frequently (see, for example,
[3,11]). For €¢ = .1 the solution curve has two turning points

and we present results for continuing up to and beyond the
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first one. We point out that this turning point is far from

being nearly angular and therefore does not cause particular

] difficulties for the pseudo-arclength method. For a case of a
nearly angular turning point, see Example 2 in [11].

On a standard triangulation of Q, with 25 vertices, we

ALY

have discretized (5.1) by linear finite elements. The result-
ing finite-dimensional system was first solved by the pseudo-

arclength method starting at the origin. We assumed that the

Y s

step~-picking procedure does not cut back the steplength a in

N YTt eTa”
. . s
.

the Euler predictor, i.e., a = B,y = 0 in (3.2), enough near

s the turning point to avoid failure of the corrector iteration.

) In this latter case, the steplength is cut back by .5 until the

o,
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corrector converges. In the last column of Table 5.1 the num-

P AN
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ber of corrector iterations is listed and an asterisk denotes
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failure to converge after the given number of iterations while

L
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ot
Y

two asterisks denote failure to yield a descent direction for

aTe I

the damped Newton process.

\.'-.:.
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Subsequently, we have used our continuation method to

e
L

continue from each of the points in Table 5.1 below the turning
' point directly to the point above that with 'u! = 2.61 which
. was finally reached. The results in Table 5.2 show that at
most 3 corrector steps are needed. The three predictor parame-

ters are also given to show for this example the effect of

Clh N

g introducing v and the early 'detection' of the turning point
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We note that for the coarse discretiza-

tion used the first turning point in case ¢ .1 is at (x,r)
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A A a 8 Y it
1 .999 4.40 L17€E-3 64.3 3
6 .995 - .732 -.21E-2 6.58 3
8 .959 -2.96 -.51E-1 3.01 2
§.28 .847 -3.70 -.125 2,47 2
8.37 .596 -5.54 -. 365 2.40 2

Table 5.2 Continuation with proposed method for each point
below turning point in Table 5.1 directly to
solution with norm r = 2.61
A suitable step-picking procedure may be able to reduce the
number of failing corrector iterations for the pseudo-arclength
method. But the fact remains that several small steps are
necessary to overcome the turning point, The next example has
a more complex solution diagram including bifurcation. It
illustrates several other features of the continuation method
and its implementation.

Let Qe be a domain that is obtained by connecting two
regions in the left and right half-plane situated symmetrically
w.r.t. the y~-axis by a channel of width € such that R
symmetric, too. Homogeneous MNeumann boundary conditions are

prescribea along 895.

(5.1) TS = Au + Au - au’ - u in @
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The applications of this reaction-diffusion equation include in
particular a selection-migration model from population genetics
(cf.[13]). We are interested in the stationary solutions only.
The bifurcation behaviour of (5.1) w.r.t. the three parameters
€e,A,a Is given in [13]. For a = 0, for example, secondary
bifurcation takes place from the branch bifurcating from the
trivial solution at the first nonzero eigenvalue Ae of the
linearization of (5.1). For a # 0, and for this case some
results will be presented below, secondary symmetry-breaking
bifurcation occurs from the branch of constant solutions
bifurcating at the origin.

Because of symmetry and the homogeneous Neumann boundary
condition, it suffices to take as QE a hon-convex, say,
L-shaped domain with vertices (0,0), (1,0), (1,.5), (.5,.5),
(.5,1), (0,1). Thus, ¢ is fixed and the parameters a and A are
left. For a > 0 the following schematic bifurcation diagrams

were obtained in [13] for a point value of u versus X.

0 < a2 < BA_ 8r_ < a2 < 27,

/
/-

Figure 5.17a Figure 5.1b
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The elliptic version of (5.1) was discretized on a
relatively coarse triangulation Qh with 21 vertices and linear
finite elements were used to compute the approximate solution
Uy . Better approximations at specified points of the solution
branches may be obtained through PLTMG by a multi-grid method.

The first nontrivial eigenvalue was As = 6,73, In fact,

h
for a = 5 no secondary bifurcation was observed. For a = 8 the
two secondary bifurcations points in Figure 5.1b are located at
(A1,ry) = (-8.17,1.04) and (Ap,rp) = (-14,6,2.42), while the
turning point is at (A3,r3) = (-16,3.46).

We present below the output of PLTMG for the following
continuation, Starting on the trivial solution in A = 0 we
switch branches three times using Method I of [6]. On the
branch of constant negative solutions we continue to (A;,r;).
There we switch branches once and continue on this branch of
non-constant solutions to (A,r) = (-11.5,1.6). Now we keep
this X fixed and switch to a as continuation parameter. Ffrom
the value a = 8 we continue to smaller values. We expect to
first come to the constant solutions and continuing further to
reach a point where no further continuation is possible. The
first happens between a = 7.5 and a = 7.4, as a more detailed
computation shows, while the branch ends at a = 6.78., If
instead we continue In r, then (a,r) = (6.,78,2.94) is a turning

point w.r.t. a as expected.
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A
A
B - 21 - T
e
oo
it A a Tyl A r det(G ) 8 ’,;E_'
'._,‘u:_\
!
4 Switch branches three times. _
1 0.000£+00  0.000E+00 0.100E+01  0.000E+00  -0.105E+00  -0.124E-05 D
0 0.000£+00 0.000E+00 0.994E+00 0.108E+00 -0.105E+00 -0.124E-05 &%35;
0 0.000E+00 0.000E+00 -0.100E-01 0.000€£+00 -0.105€+00 -0.124E-05 ?:«f‘
0 0.000E+00  0.000E+00 -0.994E+00 -0.108E+00 -0.105E+00  -0.124E-05 f-.::;:
b 1) Continue to r = 1, then to r = 1.5 and check sign of determinant. f"
1 -0.790E+01  0.100E+01  -0.989E+00 0.150E+00 -0.902E+02 0.435E-02 G
1 -0.109€E+02 0.150E+01 -0.982E+00 0.188E+00 0.541€£+03 -0.316£-01 ;u};
P
Ueterminant changes sign; find bifurcation point by secant method on §. 4?2{
AR
. 1 -0.860E+01 0.111E+01 -0.988E+00 0.157E+00 -0.128€E+03 -0.651€£-02 fi;ff
L4 1 -0.794E+01 0.101E+01 -0.959E+00 0.151£+00 -0.766E+02 0.370E-02 o
1 -0.818E+01 0.104E+01 -0.988E+00 0.153E+00 0.354E+01 -0.174E-03 vy
RN LY
Switch branches and continue to r = 1.2, r = 1.6. ﬁﬁﬁ.,
0 -0.817E+01 0.104E+01 0.484E-01 -0.639E-02 0.815E-01 -0.427E-05 :;tif
2 -0.908E+01 0.116E+01 -0.980E+00 0.142E+00 -0.652E+03 0.255E-01 TASY
- 1 -0.931£+01 0.120E+01 -0.982E+00 0.148E+00 -0.834E+03 0.312E-01 L
1 -0.115€E+02 0.160E+01 -0.976E+00 0.220E+00 -0.197E+04 0.633E-01 R
Switch continuation parameter to a. Continue to a = 7.5, then to r = 3 and -35?{
check sign of determinant. ?ﬁy%
1 0.800E+01 0.160E+01 0.829E+00 -0.419E+00 -0.197E+04 0.633E-01 iﬂi}ﬁ
& 3 0.750E+01 0.187E+01 0.393E+00 -0.200E+00 -0.183E+03 0.876E-02 AL 2
1 0.678E+01 0.300E+01 -0.481E-01 -0.999E+00 0.162E+04 0.178E-01 wH

Determinant changes sign; find turning point by secant method on det(Gu).

1 0.679E+01 0.277£4+01 0.146E+00 -0.989E+00 -0.218E+04 -0.469E-01 v:#;

1 0.678E+01 0.,294E+01 -0.398E-02 -0.100E+01 0.110E+03 0.142E-02 g

et 1 0.678E+01 0.294E+01 -0.307E-03 -0.100E+01 0.836E+01 0.109E-03 ]
1 0.675E+01 0.294E+01 0.844E-05 -~0.100E+01 -0.232E+00 -0.300E-05 RN
A

S

‘:x';\'.:

" Table 5.1 Continuation results for problem (5.1) ;f:a?

In Table 5.1, it denotes the number of (damped) Newton corrector
jiterations, while § is a quantity that changes sign at simple bifurcation
points. We point out that after switching onto the branch of non-constant

solutions, X and ; are both small, as expected, indicating a symmetry-

breaking bifurcation point (cf.(3.14)).

]
)
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